首页> 外文OA文献 >Charge transfer versus molecular conductance: Molecular orbital symmetry turns quantum interference rules upside down
【2h】

Charge transfer versus molecular conductance: Molecular orbital symmetry turns quantum interference rules upside down

机译:电荷转移与分子电导的关系:分子轨道的对称性使量子干涉规则颠倒了

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Destructive quantum interference has been shown to strongly reduce charge tunneling rates across molecular bridges. The current consensus is that destructive quantum interference occurs in cross-conjugated molecules, while linearly conjugated molecules exhibit constructive interference. Our experimental results on photoinduced charge transfer in donor-bridge-acceptor systems, however, show that hole transfer is ten times faster through a cross-conjugated biphenyl bridge than through a linearly conjugated biphenyl bridge. Electronic structure calculations reveal that the surprisingly low hole transfer rate across the linearly conjugated biphenyl bridge is caused by the presence of destructive instead of constructive interference. We find that the specific molecular orbital symmetry of the involved donor and acceptor states leads to interference conditions that are different from those valid in single molecule conduction experiments. Furthermore, the results indicate that by utilizing molecular orbital symmetry in a smart way new opportunities of engineering charge transfer emerge.
机译:破坏性的量子干扰已被证明可以大大降低跨分子桥的电荷隧穿速率。目前的共识是,破坏性量子干扰发生在交叉共轭分子中,而线性共轭分子则表现出建设性干扰。我们在供体桥受体系统中光诱导电荷转移的实验结果表明,通过交叉共轭联苯桥的空穴转移比通过线性共轭联苯桥的空穴转移快十倍。电子结构计算表明,跨线性共轭联苯桥的空穴传输速率出乎意料的低是由于存在相消干涉而不是相长干涉引起的。我们发现所涉及的供体和受体状态的特定分子轨道对称性导致了与单分子传导实验中有效条件不同的干扰条件。此外,结果表明,通过巧妙地利用分子轨道对称性,出现了工程电荷转移的新机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号